Developing a Nutrient Management Strategy for Southwest Florida Tidal Creeks

Presentation to the 12th International Symposium on Biogeochemistry of Wetlands

Mike Wessel

Janicki Environmental, Inc.

Kellie Dixon, Jay Leverone, Tony Janicki

April 25, 2018

COUN

Partners

Multiple Project Goals

Grantor (EPA Wetlands Program Development Grant)
Accelerate research on wetlands

National Estuary Programs/Stakeholders
Develop management level nutrient targets and thresholds for tidal creeks

FDEP/ EPA Standards
Inform regulatory criteria for tidal creeks

Florida Numeric Nutrient Criteria

Hierarchy 1: (Site-specific)	Level II Water Quality-Based Effluent Limitations, Nutrient Total Maximum Daily Loads, Site Specific Alternative Criteria, Reasonable Assurance Plans, and Estuary-specific Criteria	
Hierarchy 2: Lakes/Springs	Stressor-Response Relationships (lakes & springs)	
Hierarchy 3: Streams	Reference-based thresholds (streams) combined with biological data (flora and fauna)	ect Goal
Hierarchy 4: Narrative wetla	Ditches/canals used for water conveyance, inds, non-perennial streams, tidally fluctuating areas, and South Florida flowing waters	Proje

Creek Classification and Selection (16 creeks sampled)

Creek Classification and Selection Based On Watershed Characteristics Only

Chlorophyll a and Dissolved Oxygen

Log Chlorophyll (ug/l)

Stressor Response Analysis

Nutrients -> Chla – Linear regression, GLMM, Decision Tree Analysis

- Chla -> DO GLMM, Decision Tree, Quantile Regression
- DO -> Fish Linear, Logistic regression, Species specific LC50
- Fish indices Diversity indices, CPUE, length frequency index, Biomass

Landscape effects – GIS based

Review of Findings

- * Tidal creeks are critical habitat for estuarine dependent fish.
- * The water quality was characteristic of wetland environments.
- Existing DO and Chlorophyll criteria not reliable indicator of "impairment" in southwest Florida tidal creeks.
- * Observed nutrient levels have not yet resulted in highly eutrophic or dystrophic conditions in sampled creeks.

The Reference–Based Approach

Setting Targets and Thresholds in the Absence of an Observed Adverse Effect

Stewardship Management Regulatory

Relationship to "Assimilative Capacity"

Nutrients and Fish Diversity Indices

The Eutrophication Paradigm

Comparative Evaluation of Fishery Response to Nutrients

Source: Redrawn from Caddy 1993.

Distribution of Total Nitrogen by Creek

Annual Geometric Average Total Nitrogen (mg/l)

Benefits of Management Strategy

- Includes stewardship, management and regulatory components.
- * Based on observed, locally derived data.
- Includes nutrients, not just assumptions about DO/Chla and nutrients.
- Provides early detection mechanism with associated management responses.
- * Provides a mechanism to further NEP CCMP goals.
- Encourages more science as basis for improving site-specific targets.

Current/Future Efforts

- * Supplemental Grant to follow up ("One County, One Creek").
- * Investigate interaction between source water, wetland vegetation, organic decomposition, and nutrients.
- * Use data from larger tidal rivers to inform Stewardship.
- * Develop additional indices morphology habitat.

Thanks!

W/ ID 10